2,380 research outputs found

    Predicting the epidemic threshold of the susceptible-infected-recovered model

    Get PDF
    Researchers have developed several theoretical methods for predicting epidemic thresholds, including the mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message passing (DMP) method. When these methods are applied to predict epidemic threshold they often produce differing results and their relative levels of accuracy are still unknown. We systematically analyze these two issues---relationships among differing results and levels of accuracy---by studying the susceptible-infected-recovered (SIR) model on uncorrelated configuration networks and a group of 56 real-world networks. In uncorrelated configuration networks the MFL and DMP methods yield identical predictions that are larger and more accurate than the prediction generated by the QMF method. When compared to the 56 real-world networks, the epidemic threshold obtained by the DMP method is closer to the actual epidemic threshold because it incorporates full network topology information and some dynamical correlations. We find that in some scenarios---such as networks with positive degree-degree correlations, with an eigenvector localized on the high kk-core nodes, or with a high level of clustering---the epidemic threshold predicted by the MFL method, which uses the degree distribution as the only input parameter, performs better than the other two methods. We also find that the performances of the three predictions are irregular versus modularity

    Suppressing disease spreading by using information diffusion on multiplex networks

    Get PDF
    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.Comment: 11 pages, 8 figure

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    Ground state and glass transition of the RNA secondary structure

    Full text link
    RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies

    Computational investigation of static multipole polarizabilities and sum rules for ground-state hydrogen-like ions

    Full text link
    High precision multipole polarizabilities, αℓ\alpha_{\ell} for ℓ≤4\ell \le 4 of the 1s1s ground state of the hydrogen isoelectronic series are obtained from the Dirac equation using the B-spline method with Notre Dame boundary conditions. Compact analytic expressions for the polarizabilities as a function of ZZ with a relative accuracy of 10−6^{-6} up to Z=100Z = 100 are determined by fitting to the calculated polarizabilities. The oscillator strengths satisfy the sum rules ∑if0i(ℓ)=0\sum_i f^{(\ell)}_{0i} = 0 for all multipoles from ℓ=1\ell = 1 to ℓ=4\ell = 4. The dispersion coefficients for the long-range H-H and H-He+^+ interactions are given.Comment: 8 figures, 8 table

    Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    Get PDF
    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds, respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk and the pulsar is still powered by rotation.Comment: 8 pages, 3 figures; accepted for publication in Ap

    Random RNA under tension

    Full text link
    The Laessig-Wiese (LW) field theory for the freezing transition of random RNA secondary structures is generalized to the situation of an external force. We find a second-order phase transition at a critical applied force f = f_c. For f f_c, the extension L as a function of pulling force f scales as (f-f_c)^(1/gamma-1). The exponent gamma is calculated in an epsilon-expansion: At 1-loop order gamma = epsilon/2 = 1/2, equivalent to the disorder-free case. 2-loop results yielding gamma = 0.6 are briefly mentioned. Using a locking argument, we speculate that this result extends to the strong-disorder phase.Comment: 6 pages, 10 figures. v2: corrected typos, discussion on locking argument improve

    Efficient community-based control strategies in adaptive networks

    Full text link
    Most researches on adaptive networks mainly concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structures in transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing modularity QQ, we investigate the evolution of community structures during the transient process, and find that very strong community structures are induced by rewiring mechanism in the early stage of epidemic spreading, which remarkably delays the outbreaks of epidemic. Then we study the effects of control strategies started from different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not "the earlier, the better" for the implementing of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of strong community structure. For immunization strategy, immunizing the S nodes on SI links and immunizing S nodes randomly have similar control effects. Yet for quarantine strategy, quarantining the I nodes on SI links can yield far better effects than quarantining I nodes randomly. More significantly, community-based quarantine strategy plays more efficient performance than community-based immunization strategy. This study may shed new lights on the forecast and the prevention of epidemic among human population.Comment: 5 pages, 5 figure
    • …
    corecore